
Process Trace Clustering: A Heterogeneous Information Network Approach

Phuong Nguyen1, Aleksander Slominski2, Vinod Muthusamy2, Vatche Ishakian2, and Klara Nahrstedt1

1University of Illinois at Urbana-Champaign, 2IBM T.J. Watson Research Center

Abstract
Process mining is the task of extracting information from event
logs, such as ones generated from workflow management or en-
terprise resource planning systems, in order to discover models of
the underlying processes, organizations, and products. As the event
logs often contain a variety of process executions, the discovered
models can be complex and difficult to comprehend. Trace cluster-
ing helps solve this problem by splitting the event logs into smaller
subsets and applying process discovery algorithms on each subset,
resulting in per-subset discovered processes that are less complex
and more accurate. However, the state-of-the-art clustering tech-
niques are limited: the similarity measures are not process-aware
and they do not scale well to high-dimensional event logs. In this
paper, we propose a conceptualization of process’s event logs as a
heterogeneous information network, in order to capture the rich se-
mantic meaning, and thereby derive better process-specific features.
In addition, we propose SeqPathSim, a meta path-based similarity
measure that considers node sequences in the heterogeneous graph
and results in better clustering. We also introduce a new dimen-
sion reduction method that combines event similarity with regular-
ization by process model structure to deal with event logs of high
dimensionality. The experimental results show that our proposed
approach outperforms state-of-the-art trace clustering approaches
in both accuracy and structural complexity metrics.

1 Introduction
Motivation: With the advancement in information technol-
ogy enterprises have opted to automate their daily opera-
tions. Real-world business processes including airline ticket
reservation, online shopping, and administrative procedures
such as procurement and hiring are invoked electronically
using information systems. Figure 1 shows a simple process
model—the graphical representation of a process—to man-
age a loan application. The nodes correspond to activities, or
events, and the edges define the control flow. Each execution
instance, or trace, of a process is defined as an ordered list of
events executed from the beginning to the end. The informa-
tion systems responsible for executing instances of a process
generate a lot of data in the form of event logs, or a collection
of process traces1. Figure 2 shows an example of a process

1We use event logs and process traces, or simply traces, interchangeably.

Receive loan
application

Request
credit report

Review credit
report

Verify
employment

Perform title
search

Review title
report

Review loan
application

Send
approval

Send rejection

Figure 1: An example loan application’s process model

TraceID,Timestamp,Resource,Activity
Trace-10,10/16/2014 10:12:20,Resource21,Record loan application
Trace-10,10/18/2014 09:30:00,Resource10,Request credit report
Trace-10,10/25/2014 15:10:16,Resource21,Review credit report
Trace-10,10/28/2014 14:15:28,Resource21,Send rejection

Figure 2: Traces based on the loan application process model

Figure 3: A complex mined process model

trace that consists of a sequence of events (each line is an
event) and represents an instance of process in Figure 1.
Problem Description: In many situations the process model
as defined in Figure 1 may not be available or may be
obsolete. Process mining algorithms [16, 17] can then be
used to derive the process model from the event logs. Mining
for process model is also important to obtain insights into
how the process is being executed in real-life. In particular,
the aim of process mining is to discover or understand an
organization’s processes, monitor to validate whether the
implemented process conforms to the model, and to improve
the process by redesigning it to avoid observed bottlenecks.

Mining a process model from all observed traces often
results in spaghetti-like models [23] as shown in Figure 3,
which illustrates part of the real-world process for building
permit application. These models are too complicated for
humans to comprehend because of their complexity and
inaccuracy, and too cumbursome to modify or optimize. A
common solution is to cluster the traces [8] into coherent sets
of traces, and represent each set by a process model.

As traces are clustered largely based on the notion of
similarity, a good trace similarity measure results in better
quality clusters. Thus, existing solutions to process trace
clustering mainly focus on mapping traces to appropriate
data structures [8, 11], and deriving new similarity mea-
sures [2, 1] that can be used by off-the-shelf clustering al-
gorithms [7]. These approaches lack certain aspects that we
believe are essential to having good quality clusters.

First, existing approaches fail to capture the rich seman-
tic relationships between events from the event logs. For
example, events that share an underlying role or belong to
the same group of events, should still have a certain level
of similarity. Events that are executed/invoked by the same
resource (or person) are also likely to be similar. Since addi-
tional information (e.g., organization, roles, products infor-
mation, etc.) about traces is typically available in real-world
process traces, it would be desirable to to capture the extra
semantics inferred from such information.

Second, existing approaches, especially the edit
distance-based approaches [1] are not scalable. Computing
the pair-wise similarity of a large set of traces each of which
contains many events is very expensive, since the complex-
ity of edit distance-based measures is quadratic with the
length of traces. Efforts to apply standard dimension reduc-
tion techniques to process mining are limited to vector space
model-based approaches, whose similarity calculation is not
as expensive [12].
Scope and Contributions: In this paper, we propose a new
process trace clustering approach that tries to resolve both of
the above issues. Particularly, for the semantic gap issue, we
propose a new data representation for process traces based
on extensible heterogeneous information networks [13] and
capture the rich process semantics in the nodes and edges of
the network. With this representation, users can select intu-
itive meta-paths between nodes in the network to model dif-
ferent semantic relationships between process traces. While
the selected meta-paths can be used directly to calculate
the similarity between traces using existing PathSim mea-
sure [14], PathSim does not capture the sequential similar-
ity between sequences of events in traces. Therefore, we
propose SeqPathSim, a similarity measure that combines
both the peer similarity captured by PathSim and the se-
quential similarity between traces captured by edit-distance
based approaches. To overcome performance issues of edit
distance-based approaches, we propose a new dimension re-
duction method that is tailored for process traces. Partic-
ularly, we model the dimension reduction as an optimiza-
tion problem and propose an objective function that maxi-
mizes both topical similarity and process model-based rela-
tionships between events of the same dimension. Since such
an optimization problem is NP-hard, we propose a greedy
approximation algorithm to solve the problem. Experimen-
tal results using real-world datasets that span multiple busi-

ness domains show that our proposed approach outperforms
state-of-the-art process trace clustering approaches both in
terms of effectiveness and efficiency.
Paper Overview: The remaining of the paper is organized
as follow. We review relevant related work in Section 2,
and in Section 3, we present some background and basic
concepts about heterogeneous information networks. We
formally define the trace clustering problem in Section 4. In
Section 6, we present our modeling of process traces as an
extendable heterogeneous information network. We describe
our proposed SeqPathSim measure in Section 6 and our
dimension reduction method in Section 7. The experimental
results are presented in Section 8. We conclude in Section 9
with closing remarks and future research directions.

2 Related Work
Process mining [16, 17] is the task of extracting knowledge
from event logs in order to discover, monitor, and improve
processes. In terms of discovery, a number of techniques
have been developed to discover process models from event
logs, such as the alpha miner [20], heuristic miner [19], and
fuzzy miner [9]. There are also different notations for rep-
resenting process models, such as Petri nets [18], UML ac-
tivity diagrams, and BPMN [21]. In this paper, we use Petri
nets to model processes and use the heuristic miner to dis-
cover process models. For monitoring, conformance fitness
is used to answer the question ”Do the model and the log
conform to each other?”. We use the conformance checking
method developed by Rozinat et al. [10] that is implemented
within the ProM framework [22]. There have been variety of
metrics proposed to evaluate the complexity of process mod-
els [1, 3], and we adopt the structural complexity metrics for
Petri nets [1].

Process trace clustering research has focused on devel-
oping new data representations for traces, and deriving new
similarity measures between traces that can be used with off-
the-shelf clustering algorithms. One of the most common
trace representations is the vector space (or bag-of-events)
model [8, 11], where each trace is represented as a vector
and each dimension corresponds to an event type. Similar-
ity between traces is measured using typical measures such
as Euclidean distance or Cosine similarity. To better cap-
ture the order of execution of events, Greco et. al [8] use
a k-gram representation (i.e., a sequence of k consecutive
events is used as one dimension in a vector space). This ap-
proach, however, does not scale well as the number of dimen-
sions increases exponentially with k. Other approaches [2, 1]
propose using sequence-based similarity measures such as
Hamming distance and edit-distance. In Particular, Bose et
al. [1] derive edit operation costs based on a 3-gram context
of events. Weerdt et al. [3] consider the semantic gap issue
between traces clustering and generic clustering algorithms
and propose an active learning-based clustering approach to

bridge the gap. We focus on the data representation of traces
and propose a new similarity measure, SeqPathSim, that im-
proves on previous approaches by combining the rich seman-
tic of peer similarity with the sequential distance metric by
edit-distance.

Mining heterogeneous information networks (HIN) [13]
is a research direction that has gained a lot of attention
recently for its ability to capture the rich semantics of
structural types of nodes and edges in the network. Sun
et al. propose PathSim [14], a meta path-based similarity
measure that captures the similarity semantics among peer
objects in HIN. Based on PathSim, a user-guided clustering
approach [15] is also proposed to cluster objects in an HIN.
In this paper, we propose another similarity measure, i.e.,
SeqPathSim, between sequences of objects in an HIN. We
leverage HINs as the data representation for process traces
and derive the similarity between traces that can be used with
any existing clustering algorithm.

Dimension reduction techniques have been suggested to
address the curse of high dimensional datasets [4]. There
are also efforts [12] to use dimension reduction techniques
to improve the performance of process trace clustering, but
those efforts mainly focus on vector space model represen-
tation. We propose a new dimension reduction approach
for sequence-based representation of traces that combines an
off-the-shelf dimension reduction technique with regulariza-
tion by the process execution model to improve the perfor-
mance results for process traces.

3 Preliminaries: Heterogeneous Information Network
A heterogeneous information network [13] is an information
network (or graph) with multiple types of nodes (vertices)
and multiple types of links (edges).
DEFINITION 3.1. Heterogeneous Information Network
(HIN): An HIN is a directed graph G = (V,E) with a node
type mapping function φ : V → A, where A (|A| > 1)
is the set of node types, and an edge type mapping function
ψ : E→ R, whereR (|R| > 1) is the set of edge types.

An example HIN is the bibliographic network that con-
tains multiple types of nodes, such as papers (P), venues
(C), and authors (A), and multiple types of edges, such as
submissions (between P and C), and citations (between P
and P).

Multiple paths may exist between two nodes in HINs.
A meta-path, described by a sequence of relations in the
HIN that connects two types of nodes is used to capture
the underlining semantic of each path. For example, APA
represents the co-author relationship between authors, or
ACP represents the paper submission relationship.

To measure similarity between nodes in HINs, Sun
et al. [14] propose PathSim (Definition 3.2), a similarity
measure that takes advantage of the rich semantic structure
in the network and captures the true peer similarity between
nodes in HINs.

DEFINITION 3.2. PathSim: Given a symmetric meta-path
P , PathSim between two objects of the same type x and y via
meta-path P , denoted as σP(x, y), is defined as:

(3.1) σP(x, y) =
2× |ΓP(x, y)|

|ΓP(x, x)|+ |ΓP(y, y)|

where ΓP(x, y) is the set of paths from x to y via meta-path
P .

4 Problem Definition
Consider a set of process traces T. Each trace t ∈ T consists
of a finite sequence of events t = (e1, e2, ..., en), ei ∈ E, 1 ≤
i ≤ n, n > 0, where E is the set of all event types. The
number of events per trace n may be different from trace to
trace. For each event ei in a trace t, there is an associated
resource rj ∈ R that generates or executes the event, with R
being the set of all resources.

As highlighted in Section 1, discovering process models
using the entire set of process traces, may result in spaghetti-
like models [16]. Therefore, in this paper, we study the
trace clustering problem that divides T into non-overlapping
subsets of clusters {Ti}, so that each cluster represents an
underlying process model with higher accuracy.

Unlike classic data clustering problems [7] where the
objective is to either maximize the precision and recall (in
cases where ground-truth labels are available), or minimize
the intra-cluster and maximize the inter-cluster distances
(when ground-truth labels are not available), the objective
of trace clustering is to group traces that share similar execu-
tion patterns, thus enabling discovery of process models with
high degrees of fitness. Specifically, the process model’s fit-
ness quantifies the extent to which the discovered model can
accurately reproduce the recorded traces. In addition, a good
trace clustering result should also generate clusters whose
process models are simple and compact. More precisely,
they should exhibit low degrees of structural complexity.

Therefore, in this paper, we use the two metrics that
are widely used in other process trace clustering work [1, 2,
3, 11]: weighted average fitness, denoted as AveFitness,
and weighted average structural complexity, denoted as
AvgComplexity. Particularly, for each cluster in a clus-
tering result, a process model is generated (e.g., using the
Heuristic mining algorithm [19]) and then converted to the
Petri-Net model [18] for conformance analysis. The con-
formance fitness score of a discovered process model is the
fraction of traces that can be fully replayed on that model. A
process model has a perfect fitness score if all the recorded
traces can be replayed by the model. The weighted average
conformance fitness over a set of k clusters {Ti} of traces

is defined as AvgFitness =
∑k

i=1 |Ti|·Fitness(Ti)∑k
i=1 |Ti|

, where

Fitness(Ti) is the fitness score of a cluster of traces Ti. A
higher fitness score implies a more accurate process model
for a given cluster.

Trace

Event Resource
executes

follows

(a) Basic HIN model

Trace

Event Resource
executes

follows

Department

(b) Extended HIN model
Figure 4: HIN models for process traces.

The structural complexity is measured based on the
complexity of the graphical representation of a process
model. Specifically, given a process model represented as
a Petri net, the complexity is measured by counting the
number of control-flows, AND-joins and splits, and XOR-
joins and splits that appear in the process model. Similar to
AvgFitness, AvgComplexity is the weighted average of
the complexity metrics based on the cluster sizes. A lower
structural complexity score implies a simpler, more compact
model, that is potentially better understandable by humans.

Given these clustering result quality metrics, the process
trace clustering problem is formally defined as follows:

DEFINITION 4.1. Process trace clustering: Let T be a set
of process traces, E a set of events, and R as set of resources.
Find a k-partition {Ti} of T (k ≥ 2): |{Ti}| = k,Ti ∩
Tj = ∅,∀ 1 ≤ i, j ≤ k that maximizes the average fitness
AvgFitness({Ti}), and minimizes the average structural
complexity AvgComplexity({Ti}).

Like other clustering problems, the effectiveness of trace
clustering largely depend on how one defines the notion
of similarity between traces. Therefore, in this work, we
focus on deriving a similarity function sim to measure
the similarity between two traces. This similarity function
can be used with off-the-shelf clustering algorithms [7] to
produce results of high fitness and low structural complexity.

5 Modeling Process Traces as HIN
Motivated by the effectiveness of HINs to capture the peer
similarity between nodes in other domains [13, 14], we
propose the modeling of process traces as a heterogeneous
graph G = (V,E) (Figure 4a) with the set of nodes V =
T ∪ E ∪ R that consists of three node types: trace, event,
and resource. The set of edges E outline the different types
of interactions between different node types. We define the
following edge types (i.e.,R):

• consist-of: An event is a part of a trace.

• follow-up: An event follows another event in a trace.

• execute: An event is executed or generated by a resource.

As we show in Section 8, the above node types and
edge relations are chosen to be the most basic types and re-
lations, so that they are generic enough to capture a wide

variety of traces from different domains. Nevertheless, one
can easily augment the HIN model with additional types of
nodes and edges targeting a specific business process do-
main. For example, an extended HIN model, shown in Fig-
ure 4b, includes an additional node type “Department”, and
two edge types: is-part-of, which captures the relation-
ship between a resource and the department it belongs to,
and responsible-for, which indicates the resource is re-
sponsible for a trace.
Meta-paths: Given the HIN model described above, we
define the following meta-paths:

• TET : Meta-path between two traces that share common
event(s).

• TEET : Meta-path between two traces that consist of
consecutive events.

• TERET : Meta-path between two traces that consist of
events executed by the same resource.

6 Meta-Path based Similarity Measures
PathSim-based Similarity Measure: By modeling process
traces as an HIN, their similarity can be calculated using the
similarity measure between trace-typed nodes in the HIN. In
particular, we consider PathSim [14] similarity based on the
meta-paths described in Section 5.

It has been shown that the linear combination of mul-
tiple meta-paths results in better outcomes than that of an
individual meta-path [14]. Thus, in this paper, we combine
the PathSim similarities obtained by individual meta-paths
using the following linear formula:

(6.2) σ∗(x, y) =
∑
Pi

wi × σPi
(x, y)

where σPi(x, y) is the PathSim-based similarity between
two traces x and y via meta-path Pi, and wi is the weight
associated with meta-path Pi. Finding the optimal set of
weights {wi} is still an open problem and is orthogonal to
our work. Similar to previous work [14, 15], we assume that
meta-paths are selected with user guidance.

After calculating the PathSim similarity between every
pair of traces using formula 6.2, we can apply any off-the-
shelf clustering algorithm (e.g., hierarchical clustering) to
cluster the input process traces.

SeqPathSim-based Similarity Measure: Modeling process
traces as an HIN helps capture the rich semantics of struc-
tural types of nodes and edges in the network. HINs however
do not maintain the sequential order of events in each pro-
cess trace. As a result, PathSim cannot measure the similar-
ity between traces that share similar event execution order-
ings. For example, the PathSim based on the TEET meta-
path represents only the sequential relationship between two
consecutive events. Since traces consist of a sequence of

multiple events, traces sharing the same sequential execution
should typically have higher similarity scores than traces that
do not. Therefore, it is essential to have a new similarity
measure that captures the similarity between two sequences
of events (i.e., two traces) in an HIN.

The edit distance [5] quantifies how similar two se-
quences are by counting the minimum number of operations
required to transform one sequence into the other. Edit dis-
tance has shown its effectiveness in measuring similarity be-
tween sequence-like data traces in multiple domains, such as
text mining, process mining, and bioinformatics.

Motivated by the need to leverage the similarity between
two sequential executions of events in process traces, we
propose SeqPathSim: a new similarity measure for HINs
that combines the rich semantic relationships between nodes
captured by PathSim with the sequential similarity captured
by edit distance. In particular, SeqPathSim uses generic
edit-distance [5].

The performance of generic edit distance depends sig-
nificantly on how one defines the costs of editing operations
(i.e., replace, delete, and insert). For example, using unit
cost, i.e., Levenshtein’s distance [6], has been shown to be
effective in string similarity tasks. Particularly, we consider
two types of editing costs: insertion/deletion cost (the cost
to insert or delete an event before or after another event),
and replacement cost (the cost to replace an event by an-
other event). For insertion/deletion cost, we use the PathSim
based similarity via an EE meta-path (the path between an
event that follows another event), since this meta-path cap-
tures how likely an event is executed before or after another
event. For replacement cost, we use a combination of the
PathSim based similarity viaERE (representing two events
that are executed by the same resource) and ETE (repre-
senting events that are part of the same trace), since these
meta-paths capture indirect similarities of two events.

Similar to generic edit-distance, SeqPathSim between
two traces x = (a1, a2, ..., am) and y = (b1, b2, ..., bn)
(ai, bj ∈ E, 1 ≤ i ≤ m, 1 ≤ j ≤ n), denoted as υmn(x, y),
or υm,n for short, is defined by the following recursive
formula (Equation 6.3).

(6.3) υm,n =

{
υm−1,n−1 for am = bn

minυ for am 6= bn

with:

minυ =


υm−1,n + σPEE

(am, bn)

υm,n−1 + σPEE
(am, bn)

υm−1,n−1 + σPERE ,PETE
(am, bn)

7 Optimizing SeqPathSim for High-dimensionality
SeqPathSim leverages both the rich semantic relationships
between nodes captured by PathSim and the sequential

Receive
application

Review
application

Inform
decision

Figure 5: Dimension-reduced loan application’s process model

similarity by edit-distance. It also inherits the performance
drawbacks of edit distance-based measures. Recall that the
complexity of generic edit-distance is O(m ∗ n), where m
and n are the lengths of two sequences being compared.
Moreover, we need to calculate the similarities between
every pair of traces. Clustering real-world traces that are
often of high dimensionality (e.g., up to hundreds of events
per process trace resulting in high values of m and n) using
SeqPathSim is therefore computationally expensive.

Despite the high number of dimensions, we observe
that comparing process traces does not require the traces
to be represented at the fine-grained level of events. As an
example, consider the loan application process in Figure 1.
At a higher level of abstraction, the process essentially
consists of three main steps: receiving the application,
reviewing the application, and informing with a decision.
Therefore, the process model in Figure 1 can be abstracted
using only three dimensions as shown in Figure 5. Under
the new representation (each new dimension becomes a new
event type in the HIN), it is still possible to compare and
differentiate between process traces, such as traces of loan
applications under review versus those that have already
reached the inform decision step. Most importantly, the
performance of SeqPathSim with the new dimensions will
be improved due to the decrease in dimensionality.
Trace representation for dimension reduction: Before
applying dimension reduction techniques to process traces,
it is important to have an appropriate data representation for
traces. The most common data representation for dimension
reduction is based on the vector space model, in which each
trace t is represented as a vector t = (s1, s2, ..., s|E|). The
value of each dimension si is associated with a type of event
ei ∈ E and equals the frequency of the event ei in the
trace t: si = fei,t. This representation, captures the “local”
importance of each event type to a trace (via fei,t), but does
not capture the “specificity” of each event type across all the
traces. Taking the process model in Figure 1 as an example,
since the event “Receive loan application” appear in almost
all traces (being an entry point to the process), it becomes
less important as a differentiator between traces (i.e., it has
low specificity).

Motivated from TF IDF-based document representation
in text mining [24], we propose a new data representation
for process traces that captures both the local importance
of each event and its specificity to a trace. In addition
to a trace’s event frequency, we consider the popularity of
each event across all traces: nei = |{t ∈ T, ei ∈ t}|.
Intuitively, a large nei implies that event ei is popular and
thus exhibits low specificity for a trace. As a result, the
value of each dimension in a trace’s vector si is based

on the combination of the trace’s event frequency fei,t
(representing local importance) and inverse event popularity
(representing specificity). We propose a new calculation of
si following a logarithmic formula as follows:

(7.4) si =

{
(1 + log(fei,t))× log(|T|nei

) if ei ∈ t
0 otherwise

Having represented process traces as vectors, the set of
input traces T can be represented as a large matrix M of
size |T| × |E|, where each element Mij (1 ≤ i ≤ |T|, 1 ≤
j ≤ |E|) is the value associated with event type ej in the
i-th trace. Next we will show how to perform dimension
reduction on the matrix M of input traces.
Process model-regularized trace dimension reduction:
Given the matrix representation M, we can apply off-the-
shelf dimension reduction techniques [4] on M, such as non-
negative matrix factorization (NMF), principle component
analysis (PCA), or singular value decomposition (SVD). The
results of those techniques often include a matrix M′ of size
|T| × κ (where κ � |E| is the number of new dimensions)
that represents the original traces projected onto the new
dimensions; and a matrix W of size |E| × κ that represents
the mapping from the old to the new dimensions (i.e., each
row in W is appropriate to a distribution vector of an event
over the new dimensions).

The results of the existing techniques, however, cannot
be used directly for an edit distance-based approach like
SeqPathSim. Specifically, while SeqPathSim requires the
input traces to be in the form of sequences of events in the
new dimensions, the above results only give us the “soft”
mappings from the input events to the new dimensions (i.e.,
in the form of matrix W). Therefore, there is a need to
transform W into a “hard” assignment of the original events
to the new dimensions. Formally, if we represent κ new
dimensions as a set of κ clusters of events C = {Ci}, 1 ≤
i ≤ κ, then we need to derive a one-to-one mapping function
ρ : E → C that maps each event e ∈ E to a cluster in C.
The objective of the mapping function ρ is to maximize the
collective similarities between pairs of events that belong to
the same cluster.

This problem can be represented as an optimization
problem with the following objective function:

(7.5) arg max
ρ

∑
ρ(ej)=ρ(ek)

sim(ej , ek)

where sim(ej , ek) is the similarity between ej and ek in
the new dimensions and can be computed with existing
measures such as Cosine similarity or Euclidean distance-
based similarity.

Deriving the “hard” assignment solely based on the re-
sult of the existing dimension reduction techniques, how-
ever, ignores the important information about the relation-

ships between events in the process model. A process exe-
cution model can be obtained by doing a projection of the
process traces’ heterogeneous graph G = (V,E) on the set
of event nodes E, denoted as GE = (VE,EE). Because the
process model captures the follow-up relationships between
events (i.e., the weights of edges in the process model rep-
resent the number of times an event follows another event in
a trace), it provides strong indications of which events to as-
sign to a cluster. For example, events that frequently follow
each other are likely to be in the same cluster. Therefore,
we propose adding another component, denoted as ∆, to the
objective function in Equation 7.5 to account for the regular-
ization based on the process model. Particularly, ∆ is used to
maximize the collective similarities between pairs of events
that follow one or the other in the process execution model.
The new objective function for finding an optimal mapping
ρ is as follow:

(7.6) arg max
ρ

[(1− λ)×
∑

ρ(ej)=ρ(ek)

sim(ej , ek) + λ×∆]

with:

∆ =
∑

(ej ,ek)∈EE

w(ej , ek)× sim(ej , ek)

where w(ej , ek) is the weight of the edge between ej and ek
in process model GE, and λ is a user specified parameter to
tune the preference between the statistical similarity on new
the dimensions (the first component) and the regularization
based on the process model (the second component).

The optimization problem in Equation 7.6 is a variant
of the set partitioning problem and finding a feasible solu-
tion for such a problem is NP-hard. Therefore, we design a
greedy algorithm: instead of optimizing the global objective
defined in Equation 7.6, we propose a local objective func-
tion defined in Equation 7.7, where an event ej is assigned
to the cluster (i.e., new dimension) that contains the event
closest to ej .

(7.7) ρ(ej) = ρ(e∗) w.r.t. e∗ = arg max
ek∈E

sim′(ej , ek)

with:

sim′(ej , ek) = (1− λ)× sim(ej , ek) + λ× σPEE
(ej , ek)

where σPEE
(ej , ek) is the PathSim-based similarity be-

tween ej and ek via meta-path EE, which is used to account
for the sequential relationship between two events in the pro-
cess model (i.e., σPEE

(ej , ek) can be considered as the local
regularization term, similar to the role of ∆ in Equation 7.6);
sim′(ej , ek) is the new similarity measure between events
that combines both statistical similarity (i.e., sim(ej , ek))
and sequential similarity (i.e., σPEE

(ej , ek)).

Algorithm 1 Process Model-Regularized Traces Dimension
Reduction

1: procedure GREEDYPROCESSDIMRED(W, κ, E, λ)
2: // Calculate σPEE

3: for each pair (ej , ek) ∈ E do
4: Calculate σPEE

(ej , ek) (by Definition 3.2)

5: // Calculate pairwise similarities
6: for each pair (ej , ek) ∈ E do
7: Sjk = sim′(ej , ek) (by Equation 7.7)

8: // Perform hierarchical clustering
9: H = hierarchical clustering(S)

10: // Flatten the hierarchy H
11: C = flatten hierarchy(H, κ)
12: return C

Dataset Traces Events Event types
BPIC’13 7554 65533 13
RECEIPT 1434 8577 27
BANK 2000 116839 113

Table 1: Datasets

Our greedy approximation algorithm outlined in Algo-
rithm 1 uses a bottom-up strategy—similar to that of ag-
glomerative clustering algorithms—to assign original events
to clusters (i.e., the new dimensions). First, PathSim-based
similarity σPEE

and a similarity matrix S are calculated be-
tween all events in E using Equation 7.7. Next, the algo-
rithm treats each event as a singleton cluster and attempts to
successively merge, or agglomerate, pairs of events that are
closest to each other until all clusters have been merged into
a single cluster that contains all events. This step creates a
hierarchy H, where each leaf node is an event and the root
is the single cluster of the last merge. The final step is to cut
the hierarchy at some point to obtain the desirable number of
clusters κ. While there are a number of criteria [24] that can
be used to decide the cutting point on the hierarchy, we use a
simple, but effective approach that is based on finding a min-
imum similarity threshold so that the distance between any
two events in the same cluster is no more than the threshold,
and no more than κ clusters are formed.

8 Experimental Evaluation
In this section, we demonstrate the efficacy and the efficiency
of our methods using multiple real-world and synthetic
datasets spanning different business process domains.2 Our
experiments were conducted on an Intel Core i7 machine
with 16 GB of memory running Windows 7.
Datasets: Table 1 lists detailed properties about the datasets,
which are publicly available and range from a relatively
small to a large number of dimensions.
The BPIC’13 dataset consists of logs representing Volvo’s
IT incident and problem management process.

2All datasets are publically available at https://data.3tu.nl/
repository/collection:event_logs

 60

 65

 70

 75

 80

 85

 90

 95

 100

BPIC’13 RECEIPT BANK

A
v
e
ra

g
e
 c

o
n
fo

rm
a
n
c
e
 f
it
n
e
s
s

Dataset

ED
PS

SPS
DR-SPS

(a) Comparison with k = 4

 60

 65

 70

 75

 80

 85

 90

 95

 100

k=3 k=4 k=5

A
v
e
ra

g
e
 c

o
n
fo

rm
a
n
c
e
 f
it
n
e
s
s

Number of clusters

ED
PS

SPS
DR-SPS

(b) RECEIPT dataset
Figure 6: Conformance fitness analysis comparison

The RECEIPT dataset consists of logs representing the record
of execution of the receiving phase of the building permit
application process in an anonymous municipality.
The BANK dataset consists of synthetically generated logs
that represent a large bank transaction process.
Evaluation Metrics: As described in Section 4, in this pa-
per we evaluate the process trace clustering results using
process-specific metrics: weighted average conformance fit-
ness (AvgFitness), and weighted average structure com-
plexity (AvgComplexity).

Given a clustering result, a process model is generated
for each cluster using the Heuristic mining algorithm [19]
and then converted to the Petri-Net model [18] for confor-
mance analysis. Given the Petri-net model, we use two pub-
licly available plugins from the ProM framework [22] for fit-
ness and structural complexity analysis: The Conformance
Checker Plugin is used to measure the fitness of the gener-
ated process models and the Petri-Net Complexity Analy-
sis Plugin is used to analyze the structural complexity of the
process models. After fitness and complexity scores are cal-
culated for each cluster, the final scores are calculated as the
average score over all clusters, weighted by clusters’ sizes,
as described in Section 4.
Trace Similarity: We evaluate the performance of the
following approaches:

• ED: Our baseline approach is the context-aware edit
distance-based clustering [1] where the costs of editing
operations are derived from a trigram of consecutive
events. We use the implementation of ED included in
the ProM framework.

• PS: PathSim-based approach as described in Section 6.

• SPS: SeqPathSim algorithm as described in Section 6.

• DR-SPS: SPS with dimension reduction method as de-
scribed in Section 7 with λ = 0.6.

Meta-paths: The meta-paths we use for trace-to-trace sim-
ilarity in PS are TET , TEET , and TERET with weights
0.2, 0.5, and 0.3 respectively (these weights are chosen based
on user guidance and careful tuning).

For all approaches, hierarchical clustering [7] is used as
the clustering algorithm in the final step, after the similarities

Metric BPIC’13 BANK
ED PS SPS DR-SPS ED PS SPS DR-SPS

Control Flows 19.42 18.53 18.42 20.01 223.57 262.56 282.85 271.90
AND Joins/Splits 4.85 4.23 5.09 6.90 36.23 38.65 42.65 37.53
XOR Joins/Splits 6.74 6.63 6.01 6.56 72.21 81.45 87.32 89.23

Table 2: Structural complexity comparison between approaches on BPIC’13 and BANK datasets with k = 4.

Metric K=3 K=4 K=5
ED PS SPS DR-SPS ED PS SPS DR-SPS ED PS SPS DR-SPS

Control Flows 166.84 134.61 20.00 16.39 101.06 86.65 21.84 15.74 100.16 80.77 20.54 13.26
AND Joins/Splits 15.89 1.71 1.86 1.69 6.27 7.14 1.92 1.49 6.25 1.57 1.84 0.30
XOR Joins/Splits 21.35 7.15 4.42 2.11 14.32 14.33 4.07 2.32 14.04 5.61 3.66 1.43
Table 3: Structural complexity comparison on RECEIPT dataset across different k

between every pair of traces have been calculated.

8.1 Conformance fitness comparison Figure 6a shows
the weighted average conformance fitness results across
different datasets where the number of clusters k = 4.
Figure 6b shows the weighted average conformance fitness
results for the RECEIPT dataset while varying the number
of clusters k. Similar results were observed with the other
datasets but were omitted due to space constraints.

The figures show that PS, the only non-edit distance ap-
proach in our evaluation, performs quite well compared with
other edit distance-based approaches, and also clearly out-
performs the baseline ED. This verifies the effectiveness of
using PathSim similarity to capture the similarity between
traces. DR-SPS, although being applied to the traces after di-
mension reduction, still performs well compared with SPS

without dimension reduction (even better in some cases).
This is interesting, considering the primary purpose of di-
mension reduction is to improve the efficiency not the ef-
fectiveness. This result can be explained by the fact that
DR-SPS can intelligently group the traces that consist of dif-
ferent events but in the same new dimension (and thus highly
correlated) into the same cluster. We evaluate the efficiency
gained by dimension reduction in the following subsections.

All of our proposed approaches outperform the baseline
edit distance-based approach ED. The results help confirm
the effectiveness of modeling process traces as an HIN and
using PathSim as the similarity measure between traces and
events. It also helps verify the benefit of combining the
process semantic relationships captured by PathSim with
the sequential relationships captured by edit-distance in a
unified measurement (i.e., SPS and DR-SPS).

8.2 Structural complexity comparison Table 2 shows
the weighted average complexity scores across different
structural metrics (XOR joins/splits, AND joins/splits, and
control flows) for BPIC’13 and BANK datasets, where the
number of clusters k = 4. Table 3 shows similar results for
the RECEIPT dataset with varying number of clusters k.

Overall, the results highlight that our proposed ap-
proaches generally outperform the baseline ED by producing
clusters of simpler process models. The out-performance is

particularly clear in the RECEIPT (across different number of
clusters) and BPIC’13 datasets. For the BANK dataset, al-
though ED produces clusters with the least complex process
models, the difference is not significant and our proposed ap-
proaches outperform the baseline over other evaluation met-
rics (i.e., conformance fitness and efficiency).

8.3 Dimension reduction comparison In the next set of
experiments, we focus on evaluating the effectiveness and
efficiency of using DR-SPS and SPS. Recall that DR-SPS uses
dimension reduction methods while SPS does not.

In terms of efficiency, Figure 7 shows the running time
comparisons between DR-SPS (where DR-n denotes DR-SPS
with n dimensions) and SPS on the RECEIPT and BANK
datasets. As expected, DR-SPS significantly outperforms SPS
with up to 9x speed-up on the RECEIPT dataset (which has 27
dimensions), and 100x speed-up on the BANK dataset (which
has 113 dimensions).

In terms of effectiveness, Table 4 shows the fitness and
structural complexity comparisons between DR-SPS (with
varying numbers of dimensions) and SPS (whose results are
displayed in parentheses). The results show that DR-SPS
outperforms SPS in most of the cases (indicated in bold) in
both fitness and structural complexity metrics. This result
is interesting and somewhat surprising as it is generally
expected that dimension reduction for edit distance-based
approaches only benefits the efficiency at the expense of
effectiveness. In fact, the results show that our DR-SPS
approach with dimension reduction achieves both objectives.

 0

 50

 100

 150

 200

SPS DR-9 DR-7 DR-5 DR-3

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Approach

(a) RECEIPT dataset

 0

 50

 100

 150

 200

 250

 300

 350

 400

SPS DR-15 DR-12 DR-9 DR-6

R
u
n
n
in

g
 t
im

e
 (

m
in

u
te

s
)

Approach

(b) BANK dataset
Figure 7: Running time with and without dimension reduction.

Metric (SPS) RECEIPT Metric (SPS) BANK
DR-3 DR-5 DR-7 DR-9 DR-6 DR-9 DR-12 DR-15

Fitness (89.56) 91.98 89.95 89.29 90.82 Fitness (84.58) 88.97 86.57 87.12 85.52
Control Flows (21.94) 200.28 15.74 12.64 12.19 Control Flows (282.86) 271.90 287.76 325.59 293.55
AND Joins/Splits (1.92) 21.97 1.5 0.62 0.85 AND Joins/Splits (42.65) 37.53 41.39 45.92 42.54
XOR Joins/Splits (4.07) 20.36 2.33 1.95 1.38 XOR Joins/Splits (87.32) 89.23 83.15 98.48 92.05

Table 4: Effectiveness of using dimension reduction on RECEIPT and BANK datasets with varying dimensions.

9 Conclusions
In this paper, we modeled process traces as a heteroge-
neous information network (HIN), and defined a similarity
metric that not only uses the rich semantic relationship be-
tween nodes, but also the sequential execution of events in
each trace. Our dimension reduction technique allows us to
overcome the computational scalability drawbacks of edit-
distance algorithms while remarkably still providing bet-
ter quality results. A thorough experimental evaluation us-
ing real-world traces spanning multiple business process do-
mains validate and show the efficacy of our approach.

Our on-going research is pursued along two dimensions.
First, we intend to extend this approach to other domains,
and in particular apply our algorithms on network logs to find
clusters of anomalous behavior such as malicious attacks.
Second, we seek to take advantage of the resources available
in a cloud computing platform to provide business users an
interactive tool they can use to explore and understand their
processes. The challenge here is to facilitate going from a
business problem to a solution without overwhelming users
with too many choices or hard-to-interpret results. Taking
the advantage of the performance gains and simplifications
in mined processes, the ultimate goal is to have a tool that
can be applied to a diverse set of datasets and quickly guide
users to results that they can act on and then validate their
decisions in a continuous manner.

References

[1] RP Jagadeesh Chandra Bose and Wil MP van der Aalst. Context
aware trace clustering: Towards improving process mining results.
In SDM, 2009.

[2] RP Jagadeesh Chandra Bose and Wil MP van der Aalst. Trace
clustering based on conserved patterns: Towards achieving better
process models. In Business Process Management Workshops,.
Springer, 2010.

[3] Jochen De Weerdt, Jan Vanthienen, Bart Baesens, et al. Active trace
clustering for improved process discovery. Knowledge and Data
Engineering, IEEE Transactions on, 25(12):2708–2720, 2013.

[4] Imola K Fodor. A survey of dimension reduction techniques, 2002.
[5] Navarro, Gonzalo. A guided tour to approximate string matching.

ACM computing surveys 2001.
[6] Levenshtein, Vladimir I. ”Binary codes capable of correcting dele-

tions, insertions, and reversals.” In Soviet physics doklady, vol. 10,
no. 8, pp. 707-710. 1966.

[7] Xu, Rui, and Donald Wunsch. Survey of clustering algorithms.
Neural Networks, IEEE Transactions 2005.

[8] Greco, Giuseppe, et al. Discovering expressive process models
by clustering log traces. Knowledge and Data Engineering, IEEE
Transactions on 18.8 (2006): 1010-1027.

[9] Christian W Günther and Wil MP Van Der Aalst. Fuzzy mining–
adaptive process simplification based on multi-perspective metrics.
In Business Process Management, 2007.

[10] Anne Rozinat and Wil MP van der Aalst. Conformance checking of
processes based on monitoring real behavior. Information Systems,
33(1):64–95, 2008.

[11] Minseok Song, Christian W Günther, and Wil MP Van der Aalst.
Trace clustering in process mining. In Business Process Management
Workshops, 2009.

[12] Song, Minseok, et al. A comparative study of dimensionality reduc-
tion techniques to enhance trace clustering performances. Expert Sys-
tems with Applications 40.9 (2013): 3722-3737.

[13] Yizhou Sun and Jiawei Han. Mining heterogeneous information net-
works: a structural analysis approach. ACM SIGKDD Explorations
Newsletter, 14(2):20–28, 2013.

[14] Sun, Yizhou, et al. Pathsim: Meta path-based top-k similarity search
in heterogeneous information networks. Proceedings of the VLDB
Endowment, 4(7), 2011.

[15] Sun, Yizhou, et al. Integrating meta-path selection with user-guided
object clustering in heterogeneous information networks. In 18th
ACM SIGKDD, 2012.

[16] Wil Van Der Aalst. Process mining: discovery, conformance and
enhancement of business processes. Springer Science & Business
Media, 2011.

[17] Wil Van der Aalst, Ton Weijters, and Laura Maruster. Workflow
mining: Discovering process models from event logs. Knowledge
and Data Engineering, IEEE Transactions on, 2004.

[18] Wil MP Van der Aalst. The application of petri nets to workflow
management. Journal of circuits, systems, and computers, 8(01):21–
66, 1998.

[19] AJMM Weijters, Wil MP van Der Aalst, and AK Alves De Medeiros.
Process mining with the heuristics miner-algorithm. Technische
Universiteit Eindhoven, Tech. Rep. WP, 166:1–34, 2006.

[20] Lijie Wen, Wil MP van der Aalst, Jianmin Wang, and Jiaguang
Sun. Mining process models with non-free-choice constructs. Data
Mining and Knowledge Discovery, 15(2):145–180, 2007.

[21] Stephen A White. Introduction to BPMN. IBM Cooperation, 2004.
[22] van Dongen, Boudewijn F., et al. The ProM framework: A new era

in process mining tool support. In Applications and Theory of Petri
Nets, 2005.

[23] De Medeiros, Ana Karla Alves, et al. Process mining based on
clustering: A quest for precision. Business Process Management
Workshops, 2008.

[24] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schtze.
Introduction to information retrieval. Vol. 1. Cambridge: Cambridge
university press, 2008.

